Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Am J Transplant ; 22(11): 2571-2585, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35897156

RESUMO

Allogeneic islet transplantation is a promising experimental therapy for poorly controlled diabetes. Despite pharmacological immunosuppression, long-term islet engraftment remains elusive. Here, we designed a synthetic fusion transgene coupling PD-L1 and indoleamine dioxygenase [hereafter PIDO] whose constitutive expression prevents immune destruction of genetically engineered islet allograft transplanted in immunocompetent mice. PIDO expressing murine islets maintain robust dynamic insulin secretion in vitro and when transplanted in allogeneic hyperglycemic murine recipients reverse pre-existing streptozotocin-induced and autoimmune diabetes in the absence of pharmacological immunosuppression for more than 50 and 8 weeks, respectively, and is dependent on host CD4 competence. Additionally, PIDO expression in allografts preserves endocrine functional viability of islets and promotes a localized tolerogenic milieu characterized by the suppression of host CD8 T cell and phagocyte recruitment and accumulation of FOXP3+ Tregs. Furthermore, in the canine model of xenogeneic islet transplantation, muscle implanted PIDO-expressing porcine islets displayed physiological glucose-responsive insulin secretion competency in euglycemic recipient for up to 20 weeks. In conclusion, the PIDO transgenic technology enables host CD4+ T cell-modulated immune evasiveness and long-term functional viability of islet allo- and xenografts in immune-competent recipients without the need for pharmacological immune suppression and would allow for improved outcomes for tissue transplantation.


Assuntos
Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Cães , Humanos , Camundongos , Aloenxertos , Antígeno B7-H1/metabolismo , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto , Terapia de Imunossupressão , Ilhotas Pancreáticas/metabolismo , Camundongos Endogâmicos C57BL , Suínos , Indolamina-Pirrol 2,3,-Dioxigenase
3.
J Neurosci ; 40(26): 5105-5115, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32430295

RESUMO

The unmet medical need of patients with multiple sclerosis (MS) is the inexorable loss of CNS myelin and latterly neurons leading to permanent neurologic disability. Solicitation of endogenous oligodendrocytes progenitor cells, the precursor of oligodendrocytes, to remyelinate axons may abort the onset of disability. In female mice with experimental autoimmune encephalomyelitis (EAE), a murine model of MS, adoptive transfer of IL-10+ regulatory B cells (Bregs) has been shown to reverse EAE by promoting the expansion of peripheral and CNS-infiltrating IL-10+ T cells. Here, we examined whether Bregs treatment and its bystander effect on regulatory T cells are associated with CNS repair as reflected by oligodendrogenesis and remyelination. We have found that transfusion of Bregs reverses established clinical EAE and that clinical improvement is associated with a significant increase in spinal cord remyelination as reflected by g-ratio analysis within the thoracic and lumbar spine. We further observed in the spinal cords of EAE Bregs-treated mice that CNS resident CD11b/CD45intLy6C- microglia, and infiltrating CD11b+/CD45high monocytes/macrophages content reverts to normal and polarize to a M2-like CD206+ phenotype. Concurrently, there was a substantial increase in neo-oligodendrogenesis as manifest by an increase in CD45-/low CNS cells expressing A2B5, an early marker in oligodendrocytes progenitor cell differentiation as well as GalC+/O1+ premyelinating and myelin basic protein+/myelin oligodendrocyte glycoprotein+ mature oligodendrocytes with reciprocal downregulation of paired related homeobox protein 1. These results demonstrate that the clinical benefit of Bregs is associated with normalization of CNS immune milieu and concurrent activation of oligodendrocyte progenitor cells with subsequent remyelination.SIGNIFICANCE STATEMENT In multiple sclerosis patients, demyelination progresses with aging and disease course, leading to irreversible disability. In this study, we have discovered, using a mouse model of multiple sclerosis, that the transfusion of autologous regulatory B cells (Bregs) is able to ameliorate, cure, and sustain the durable remission of the disease. We show that the adoptive transfer of Bregs dramatically decreased the frequency of myeloid-derived cells, both infiltrating monocytes/macrophages and resident microglia, and converted their phenotype to an immunosuppressive-like phenotype. Moreover, we showed that CNS oligodendrocyte progenitor cells are activated following Bregs treatment and differentiate into myelinating oligodendrocytes, which results in neo-oligodendrogenesis and remyelination of spinal cords.


Assuntos
Linfócitos B Reguladores/transplante , Encefalomielite Autoimune Experimental/patologia , Células Mieloides , Células Precursoras de Oligodendrócitos , Remielinização/fisiologia , Animais , Linfócitos B Reguladores/imunologia , Encefalomielite Autoimune Experimental/imunologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese/fisiologia , Medula Espinal/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...